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A matrix continued fraction is defined and used for the approximation of a func-
tion F known as a power series in 1�z with matrix coefficients p_q, or equivalently
by a matrix of functions holomorphic at infinity. It is a generalization of
P-fractions, and the sequence of convergents converges to the given function. These
convergents have as denominators a matrix, the columns of which are orthogonal
with respect to the linear matrix functional associated to F. The case where the
algorithm breaks off is characterized in terms of F. � 1999 Academic Press
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1. INTRODUCTION

A definition of a matrix continued fraction will be given for matrices of
any size p_q. The definition is used to define an extension of the Euler�
Jacobi�Perron algorithm to the matrix case. When F is a vector, the
method is already known, and studied either in the framework of number
theory (F is a vector of N p and the approximations are simultaneous
approximations of the p given numbers, see for example [7]) or in the
framework of analytic functions (i.e., F is a vector of analytic functions at
infinity for [5], in a neighbourhood of zero for [2]). The two last authors
have given non-equivalent definitions, apart from the transformation
z � 1�z. This can be seen from the fact that the interruption phenomenon
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is completely characterized in [5], and not in [2]. The two algorithms in
[7] and [5] are exactly the same, i.e., the Euler�Jacobi�Perron algorithm,
i.e., the extension of Euclid's algorithm for numbers or for polynomials,
and, of course, give the same recurrence relations for the numerators and
denominators of the approximants (xQn in terms of Qn+1 , } } } , Qn& p in
our terminology).

The question under study here is the matrix case of size p_q from which
the vector case [5] can be recovered for q=1.

Starting from a function F expanded in a power series in 1�z with matrix
coefficients of size p_q, a matrix continued fraction is associated,
generalizing the P-fractions (or Euclid's algorithm !). The convergents
converge to the given function F with respect to the valuation norm
(see Section 4). So an approximation is obtained which can be called a
Pade� �Hermite approximation in the following sense: F=( fi, j), i=1, ..., p,
j=1, ..., q is given, for each n two matrices Qn , Pn are found; Qn is a square
invertible matrix of size q_q, Pn is a p_q matrix and all the terms of the
matrix F&Pn Q &1

n satisfy (Theorem 1)

(F&Pn Q &1
n ) i, j=O(1�zni+mj+1), i=1, ..., p; j=1, ..., q,

where n� =(n1 , ..., np) and m� =(m1 , ..., mq) are the regular multi-indices
([6], [9] and Section 6) associated to n. It must be emphasised that the
Pade� �Hermite approximation usually used ([4]) would have given

F&PnQ &1
n =O(1�zk) R(1�z),

where R is an analytic function, and with k linked to n. This last notion is
less precise than what is found here.

As any rational fraction, PnQ&1
n can be represented by several pairs

Pn , Qn . For one of these, Qn has as columns the vectors, orthogonal with
respect to the matrix functional associated to F [9, Theorem 2].

So, in the case of matrices, a natural extension of the scalar Pade�
approximation ([1]) for p=q=1, or the vector Pade� approximation
[5, 10] for q=1 has been found, including all the aspects: rational
approximation, orthogonal polynomials [9], continued fraction.

The last part, following [5] for the vector case (and Euler for the scalar
case) looks at the problem of the interruption of the algorithm. This case
is characterized in terms of F by the following: the algorithm is interrupted
if and only if there exists a q_(q+ p) matrix C=(:, ;) (: and ; are
respectively of size q_q and p_q) of maximum rank q such that

det _C \Iq

F+&=det(:+;F)=0.
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The classical cases ( p=q=1 the function is rational, and q=1 the p scalar
functions are linked by a linear relation with polynomial coefficients) are
recovered.

2. MATRIX FRACTION

A part of this study has been used for the complete study of a particular
case of a continued fraction [8]. We are interested in a ratio of matrices
K } H&1, K # Mp, q , H # Mq, q and as usual for rational numbers, an equiv-
alence relation is defined in the set Mp+q, q which is in fact the set of the
pairs (H, K )

A, A$ # Mp+q, q , AtA$ : _C # Mq, q , det C{0, A$=AC

Let Gp, q be the set of the equivalent classes of matrices (Grassmann space),
then operations are defined in Gp, q through the canonical injection from
Mp, q to Gp, q . Denote by Iq the unit matrix of size q_q, then

? : Mp, q � Mp+q, q � Gp, q

A � \Iq

A+� Cl \Iq

A+ .

Operations are defined in Gp, q through this canonical injection. Namely, we
get for the addition

Cl \C
A++Cl \D

B+=Cl \ Iq

AC &1+BD&1+ ,

Cl \Iq

A++Cl \D
B+=Cl \ D

AD+B+ .

Canonically, to a transformation w in Mp, q a transformation w~ in Gp, q is
associated (if it exists) such that

w~ ?(A)=?w(A)

We now define what will be used as a quotient in the space Mp, q and will
be denoted by 1�Z=T(Z).

Let T� , defined on Mp+q, q , be the permutation of the rows which puts the
last row at the first place. T is defined from Mp, q to Mp, q and by a
straightforward computation we obtain the direct definition of T as
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b1, 1 } } } b1, q

if B=\ } } } + , B � \Iq

B+� T� \Iq

B+=\B1

B2+� T(B)=B2B&1
1

bp, 1 } } } bp, q

where B1=\
bp, 1

1
0
0

} } }
} } }
. . .
} } } 1

bp, q

0
0
0 + , B2=\

0
b1, 1

bp&1, 1

} } }
} } }
} } }
} } }

0 1
b1, q

bp&1, q
+ .

So, in explicit form, as a transformation of Mp, q , we get, if bp, q{0

T(B)=
1

bp, q \
1

b1, q

} } }
bp&1, q

&bp, 1

b1, 1 bp, q&b1, q bp, 1

} } }
bp&1, 1 bp, q&bp&1, q bp, 1

} } }
} } }

} } }

&bp, q&1

b1, q&1 bp, q&b1, q bp, q&1

bp&1, q&1 bp, q&bp&1, qbp, q&1
+

(1)

It is useful to have also explicitly the inverse application T &1(A) for a p_q
matrix A, if a1, 1{0

T &1(A)=
1

a1, 1 \
a2, 2a1, 1&a1, 2 a2, 1

} } }
ap, 2a1, 1&a1, 2ap, 1

&a1, 2

} } }
} } }
} } }
} } }

a2, qa1, 1&a1, qa2, 1

ap, qa1, 1&a1, qap, 1

&a1, q

a2, 1

ap, 1

1 + . (2)

It is a direct extension of the quotient defined for vectors in [5], i.e., for
the case q=1

b1

T : \ b +�
1
bp \

1
b1

b
bp&1

+ .

bp

Because T p+q=I, T can be considered as a partial quotient. Moreover, if
the matrix A is square p_p, then T p(A)=A&1. T� is also the left
multiplication by the matrix of permutation J,

T� \H
K+=\

0
1
0
0

} } }
} } }
. . .
} } }

0

1

1
0
0
0+ \H

K +=J \H
K + .
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For an arbitrary given matrix B, let us now consider the homographic
application w(Z)=1�(B+Z)=T(B+Z). The corresponding application in
Mp+q, q and Gp, q is the left multiplication by a matrix W,

T� \ Iq

B+Z+=J \ Iq

B+Z+
=J \Iq

B
0
Ip+\

Iq

Z+=W \Iq

Z+ .

More explicitly

bp, 1 } } } bp, q 0 } } } 1
1 } } }
b . . .

W=J \Iq

B
0
Ip+=\ } } } 1 0 } } } 0+ ,

b1, 1 } } } b1, q 1 } } } 0
b b . . . b

bp&1, 1 } } } bp&1, q 0 } } } 1 0

det(W )=(&1) p+q+1 (3)

3. MATRIX CONTINUED FRACTION

For a family of p_q matrices Bi , the preceding quotient allows us to
consider matrix continued fractions

1

B1+
1

B2+
1
.. .

,

where Bi # Mp, q and 1�B=T(B). We will always suppose it is possible to
form T(B), i.e., bp, q{0 and will study the convergents of this continued
fraction

6n=
1

B1+
1

B2+
1

.. .+
1

Bn
.
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Definition 1. Continued fractions are called true if all the elements Bk

satisfy

(i) bp, q(z) is a polynomial of degree sk�1;

(ii) bp, 1(z), ..., bp, q&1(z) and b1, q(z), ..., bp&1, q(z) are polynomials of
degree smaller than sk&1;

(iii) all bi, j (z), i=1, ..., p&1; j=1, ..., q&1 are polynomials of
degree smaller than sk&2.

Definition 2. A true continued fraction is called a regular continued
fraction if for all k, sk=1.

In the case of a regular continued fraction the Bk(z) are of the following
kind, with :, ;, #, $ constants, and the : nonzero:

Bk(z)=\
0

0
$k, 1

} } }

} } }

0

0
$k, q&1

#k, 1

} } }
#k, p&1

:kz+;k
+ . (4)

We will show that for the considered functions the continued fraction is
always a true continued fraction, and it will be assumed to be a regular
one.

4. THE SET OF THE CONSIDERED FUNCTIONS

As usual for Pade� approximation in the neighbourhood of infinity, the
functions are of the type

f # C[[1�z]], f (z)= :
�

k=0

ck

zk+1

where ck are complex constants. In this vector space of formal power series
in 1�z without constant term, the following norm is defined

&=inf[k, ck{0], & f &=e&&

and satisfies & f+ g&�max(& f &, &g&). In the following, convergence is to
be understood with respect to this norm.

For functions in C[[1�z]], 1�f is clearly the sum of a polynomial of
degree at least one and a series of the same kind, so f is classically
approximated by continued fractions [3, 11]
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1

b1(z)+
1

b2(z)+
1
. . .

,

where bk(z) are polynomials. The same is done for a matrix F(z) with
elements in C[[1�z]], and the convergence is studied for the same norm
on each component.

5. THE ALGORITHM

A description of the algorithm to obtain F(z) as a continued fraction is
given; it is a direct generalization of Euclid's algorithm, or also of P-frac-
tions [3, 5, 11]. The notation P[A] means the polynomial part of A, i.e.,
each term is the polynomial part of the corresponding term of A if A is a
matrix, and 1�A means T(A)

F=F0=
1

P1+F1 , P1+F1=T &1(F)

Fn=
1

Pn+1+Fn+1 , Pn+1+Fn+1=T &1(Fn)

We obtain, formally,

F=
1

P1+
1

P2+
1
.. .

.

In Mp+q, q (and in Gp, q), it follows, with Wn the ( p+q)_( p+q) matrix
associated to the homographic application wn(Z)=T(Pn+Z),

\Iq

F+=\ Iq

F0+=T� \ Iq

P1+F1+ , P1=P[T &1(F0)]

\Iq

Fn+=T� \ Iq

Pn+1+Fn+1+=Wn+1 \ Iq

Fn+1+ (6)

\Iq

F+=\ Iq

F0+=Mn \ Iq

Fn+
M0=Ip+q , Mn=Mn&1Wn , Mn=W1 } } } Wn .
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An expression of the convergent of order n is obtained;

\ Iq

6n+=Mn \Iq

0 + . (7)

It follows that, if yk
n , k=1, } } } , p+q are the columns of Mn ,

Mn=( y1
n , ..., yp+q

n ), then \ Iq

6n+=( y1
n , ..., yq

n).

6. PROPERTIES OF THE CONTINUED FRACTION

We study the properties of the continued fraction associated to a p_q
matrix of functions of C[[1�z]]. We first recall the definition of a regular
multi-index ([6])

Definition 3. A multi-index k� =(k1 , ..., kd) # Zd is called regular if

k1�k2� } } } �kd�k1&1

Any integer n defines only one regular multi-index of size d such that
�d

1 n i=n: if n=&d+k with 0�k<d, then (n1 , ..., nd)=(&+1, ..., &+1,
&, ..., &) i.e., k terms &+1.

Lemma 1. If F is a p_q matrix of functions of C[[1�z]], then the
continued fraction associated to F is a true continued fraction.

Proof. The proof is a direct consequence of (2).
Let A, written for any Fn of the algorithm, be a p_q matrix, with

ai, j # C[[1�z]] for all i and j. Then T &1(A) is the sum of a matrix polyno-
mial P and of a matrix B where all elements bi, j # C[[1�z]]:

If a1, 1=
:s

zs + } } } , then
1

a1, 1

=
zs

:s
(1+decreasing powers of z), s�1.

Thus (T &1(A))p, q is the sum of a polynomial of degree s and of bp, q a
function of C[[1�z]].
(T &1(A)) i, j , for i= p or j=q is a quotient a i, j�a1, 1 so is the sum of a poly-
nomial of degree at most s&1 and of a function of C[[1�z]]. Similarly
(T &1(A)) i, j for i{ p and j{q is the sum of a polynomial of degree at most
s&2 and a function of the right kind. So F is associated to a true continued
fraction.
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Moreover, if a1, 1 has a nonzero first term :�z, i.e., s=1, then P has the
form (4). K

Two sequences of multi-indices, of sizes respectively q and p, are defined
in the following way. For any integer k, let sk be the degree of (Pk)p, q

(sk�1) and k=&q++, 0�+<q, then m� k=(mk
1 , ..., mk

q), where

mk
j =sj+sq+ j+ } } } +s&q+ j , j=1, ..., +

=sj+sq+ j+ } } } +s(&&1) q+ j , j=++1, ..., q.

Now do the same to obtain a sequence (n� k)k>0 , p replacing q. Then the
following theorem is obtained for the approximation of F by the
convergents of the continued fraction

Theorem 1. Let k be any integer, defining the multi-indices m� k=
(mk

1 , ..., mk
q) and n� k=(nk

1 , ..., nk
p). If 6k is the convergent of order k of F, then

the order of approximation is

(F&6k) i, j=O(1�zni
k+mj

k+1).

This will be denoted by

F&6k=O(1�zn� k+m� k+1). (8)

Proof. The proof is by recurrence.
Let us consider the case k=1:

F0=(ai, j) i=1, ..., p; j=1, ..., q=
1

P1+F1

a2, 2&a2, 1

a1, 2

a1, 1

} } } a2, q&a2, 1

a1, q

a1, 1

a2, 1

a1, 1

P1+F1=\ b b +&
a1, 2

a1, 1

} } } &
a1, q

a1, 1

1
a1, 1

} } } P _a2, 1

a1, 1&
P1=\ b b + .

&P _a1, 2

a1, 1& } } } &P _a1, q

a1, 1& P _ 1
a1, 1&
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We now compare 61=T(P1) and F=F0 term by term. We write

a1, 1=
1

A1, 1

, s1=deg(P[A1, 1]).

So it follows

(F&61)1, 1=a1, 1&
1

P[1�a1, 1]
=

A1, 1+O(1�z)&A1, 1

A1, 1P[A1, 1]

=O(1�z1+2s1)

(F&61)1, j =a1, j&
P[a1, j �a1, 1]

P[1�a1, 1]
=a1, j&

P[a1, jA1, 1]
P[A1, 1]

=
a1, j (A1, 1+O(1�z))&(a1, j A1, 1+O(1�z))

P[A1, 1]

=O(1�z1+s1), j=2, ..., q

(F&61) i, 1=a i, 1&
P[ai, 1 �a1, 1]

P[1�a1, 1]
=O(1�z1+s1), i=2, ..., p

(F&61) i, j =O(1�z), i{1, j{1.

At step k+1, we have, replacing the continued fraction from P2 to Pk+1

by F1&=,

F0=
1

P1+F1 , F1&\ 1
P2+ } } } +

1
Pk+1+=(=i, j) i=1, ..., p; j=1, ..., q

F0&6k+1=
1

P1+F1&
1

P1+F1&=
.

Comparing term by term, it follows, with the same computations as before:

(F0&6k+1)1, 1==p, qO(1�z2s1)

(F0&6k+1)1, j==p, j&1O(1�zs1), j=2, ..., q

(F0&6k+1) i, 1== i&1, q O(1�zs1), i=2, ..., p

(F0&6k+1) i, j== i&1, j&1, i=2, ..., p, j=2, ..., q.

This gives the recurrence relation for the order of approximation denoted
by (nk

i, j(s1 , ..., sk)), i=1, ..., p; j=1, ..., q,
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F&6k=(O(1�znk
i, j)) i=1, ..., p; j=1, ..., q

nk+1
1, 1 (s1 , s2 , ..., sk+1)=nk

p, q(s2 , ..., sk+1)+2s1

nk+1
1, j (s1 , s2 , ..., sk+1)=nk

p, j&1(s2 , ..., sk+1)+s1 , j=2, ..., q

nk+1
i, 1 (s1 , s2 , ..., sk+1)=nk

i&1, q(s2 , ..., sk+1)+s1 , i=2, ..., p

nk+1
i, j (s1 , s2 , ..., sk+1)=nk

i&1, j&1(s2 , ..., sk+1), i=2, ..., p, j=2, ..., q

and from the initial condition (n0
i, j=1 for all i and j) it is easy to conclude,

with the previous definitions of m� k=(mk
1 , ..., mk

q) and n� k=(nk
1 , ..., nk

p) that

nk
i, j=nk

i +mk
j +1, i=1, ..., p; j=1, ..., q,

which is the required result. K

In the case where the continued fraction associated to F is not only a
true continued fraction, but also a regular one, we have sk=1 for all k, and
so the multi-indices m� k and n� k are the regular multi-indices of sizes respec-
tively q and p defined by k, i.e., if k=&q++, 0�+<q, then m� k=
(&+1, ..., &+1, &, ..., &) (+ terms equal to &+1), and similarly for the n� .

The following theorem for the convergence of the continued fraction is
now obtained.

Theorem 2. Every true continued fraction converges to some matrix.

Proof. The convergence of the sequence of convergents 6n is equivalent
to the convergence of the series �k�0 (6k+1&6k). With the considered
norm, the necessary condition

&6k+1&6k& � 0

is also sufficient. As 6k is the convergent of the matrix 6N , N�k, by the
preceding theorem

(6k+1&6k) i, j=O(1�zni
k+mj

k+1), i=1, ..., p; j=1, ..., q

and the result is obtained. K

The continued fraction obtained from a given function is unique, as
described in the following

Theorem 3. If the limit of a continued fraction is decomposed into a con-
tinued fraction by the previous algorithm, then the same fraction is obtained.
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Proof.

F=
1

P1+ } } }
=

1
P1+F1 .

With the (not confusing) notation T, we get

(T &1(F))p, q=
1

(F)1, 1

=
1
1

(P1+F1)p, q

=(P1+F1)p, q

and so P[T &1(F)]p, q=(P1)p, q , and so on. K

Theorem 4. Suppose the continued fraction deduced from F is a regular
one. Denote the columns of the matrix Mn by yk

n , k=1, ..., p+q, then the
convergent of the continued fraction, written in Gp, q is

Cl \ Iq

6n+=Cl( y1
n , y2

n , ..., yq
n)=Cl( y1

n , y1
n+1 , ..., y1

n+q).

The sequence ( y1
n)n�0 of vectors of size p+q satisfies the following

recurrence relation, for n+q�1 (where the constants :, ;, #, $ are defined in
(4))

y1
n+q= y1

n+q&1 $n+q, 1+ } } } +y1
n+1 $n+2, q&1+ y1

n(:n+1z+;n+1)

+y1
n&1#n+1, p&1+ } } } + y1

n& p+1#n+1, 1+ y1
n& p (9)

with the initial conditions y1
n=0, n<0, y0=(1, 0, ..., 0)t.

Proof. The convergent of order n is

\ Iq

6n+=Mn \Iq

0 + , Mn+1=Mn Wn+1 , i.e.,

( y1
n+1 , y2

n+1 , ..., y p+q
n+1 )=( y1

n , y2
n , ..., y p+q

n ) Wn+1

Wn=

$n, 1 } } } $n, q&1 :n z+;n 0 } } } 1

.

1 } } } b
b . . . b b
b . . . b
0 } } } 0 1 0 } } } 0
0 } } } 0 #n, 1 1 } } } 0
b b b . . . b
0 } } } 0 #n, p&1 0 1 0
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So the recurrence relations for the yk
n are

y1
n+1= y1

n $n+1, 1+ y2
n

b

yq&1
n+1= y1

n $n+1, q&1+ yq
n

(10)
yq

n+1= y1
n(:n+1 z+;n+1)+ yq+1

n +#n+1, 1 yq+2
n + } } } +#n+1, p&1y p+q

n

yq+k
n+1= yq+k+1

n , k=1, ..., p&1

yq+ p
n+1 = y1

n .

Summing the relations, written with the right indices, the recurrence
relation for the sequence ( y1

n)n�0 is found as (9)

y1
n+q= y1

n+q&1 $n+q, 1+ } } } +y1
n+1 $n+2, q&1+ y1

n(:n+1z+;n+1)

+y1
n&1#n+1, p&1+ } } } + y1

n& p+1#n+1, 1+ y1
n& p

The initial conditions follow from (6).
The other columns of the convergent y2

n , ..., yq
n are linear combinations of

the y1
n+k

y2
n= y1

n+1& y1
n $n+1, 1

y3
n= y2

n+1& y1
n $n+1, 2 = y1

n+2& y1
n+1 $n+2, 1& y1

n$n+1, 2

b

yq
n= yq&1

n+1& y1
n $n+1, q&1= y1

n+q&1& y1
n+q&2 $n+q&1, 1& } } } & y1

n$n+1, q&1 .

In matrix form, we get

( y1
n , y2

n , ..., yq
n)=( y1

n , y1
n+1 , ..., y1

n+q&1)

1 &$n+1, 1 &$n+1, 2 } } } &$n+1, q&1

1 &$n+2, 1 } } } &$n+2, q&2

_\ . . . b + .
1 &$n+q&1, 1

1

As the matrix on the right is invertible, it follows that in Gp, q we have

Cl \ Iq

6n+=Cl( y1
n , y2

n , ..., yq
n)=Cl( y1

n , ..., y1
n+q)

which ends the proof. K
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The approximant found as ( y1
n , y1

n+1 , ..., y1
n+q) is a ( p+q)_q matrix

which can be written in two blocks of size respectively q_q and p_q, as

( y1
n , y1

n+1 , ..., y1
n+q)=\Qn

Pn+ ,

Qn=(Qn , Qn+1 , ..., Qn+q),

Pn=(Pn , Pn+1 , ..., Pn+q).

Since the sequence (Qn)n�0 is a sequence of vector polynomials of size q,
which satisfies the recurrence relation (9), we know [9] that it is a matrix-
orthogonal sequence with respect to a ( p_q) matrix of linear forms
3=(3i, j), i=1, ..., p; j=1, ..., q.

Let (hn)n�0 be the canonical basis of C[X]q (i.e., for n=&q+&0 , hn has
only the component &0 which is nonzero, and is x&). The Qn are defined by
the recurrence relation (9) and the initial conditions. Looking at the first
column of the product W1 } } } Wn , it is clear that

Qn=c0h0+ } } } +cn hn , cn{0, n=0, ..., q&1.

The recurrence relations (9) for the Qn can be written as

(diag :n) zQ=AQ=\
a (0)

0 } } } } } } 1 0 0

+ Q, \n, :n{0,

b a (0)
1 } } } } } } 1 0

b . . .
. . .

&1 } } } } } }
0 &1 } } } } } }
0 0

. . .
(11)

where Q is the infinite column vector (Q0 , Q1 , ...)t (each term being a
vector, Q could be written as a scalar matrix (�_q)) and A a scalar
infinite band matrix with p+q+1 diagonals. The two extreme diagonals
having nonzero terms, the matrix form is non degenerate ([9]) if and only
if all the :n{0, and for all n, Qn is expanded in the basis (hi)i�0 exactly
up to the term hn .

We can now consider again the question of the degree of approximation,
not for F&6k as in theorem 1 but for the weak approximation FQk&Pk ,
which is equivalent to considering each column of the preceding matrix,
and in particular the first column FQk&Pk .
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Theorem 5. Suppose the continued fraction is regular. If the index k
defines the regular multi-index of size p, n� =(n1 , ..., np), then

(FQk&Pk) i=O(1�zni+1), i=1, ..., p
(12)

(FQk&Pk)=O(1�zn� +1).

Proof. The index k defines also the regular index of size q,
m� =(m1 , ..., mq) and because Qk is expanded in the basis h0 , ..., hk , the
component i of Qk is of degree at most mi for i=1, ..., q.
We have

FQk&Pk=(F&6k) Qk .

Using Theorem 1, it follows for z going to infinity that, for i=1, ..., p,

(FQk&Pk(z)) i= :
q

j=1

O \ 1
zni+mj+1+ zmj=O \ 1

zni+1+ ,

and the conclusion for the weak approximation is obtained. K

From this, the approximation of F is either 6k or the two matrices Qk

and Pk , with 6k=Pk(Qk)&1 satisfying

(F&6k) i, j=O(1�zni+mj+1), i=1, ..., p, j=1, ..., q

FQk&Pk=O(1�zn� +1),

the right hand side of the second formula meaning a matrix of terms 1�z*
where the powers of 1�z are regular multi-indices on each row and column,
decreasing in the columns, increasing in the rows, starting from n� defined
by k in the first column, i.e., writing only the powers of the matrix
O(1�zn� +1) we get, if k=&p++, 0�+<p

&+1 } } } &+1 &+2 &+2 } } }

&+1 } } } &+1 &+1 &+2 } } }\ b b . . .
. . . + .

& . . . &+1 } } }
& & &+1 } } }

So the continued fraction gives rise to a matrix Pade� approximant of F.
Pk being a vector polynomial is, from the approximation property,

necessarily the polynomial part of FQk , and with the notations

i=1, ..., p; j=1, ..., q, fi, j= :
�

&=0

f &
i, j

z&+1 , 3 i, j(x
&)= f &

i, j

251MATRIX CONTINUED FRACTIONS



it follows, each functional acting on x, k defining (m1 , ..., mq) and (Pk) i

being the component i of Pk [9]

i=1, ..., p, (Pk) i (z)= :
q

j=1

3i, j \(Qk) j (x)&(Qk) j (z)
x&z +

i.e., Pk(z)=3 \Qk(x)&Qk(z)
x&z + , deg(Pk) i=m1&1.

From this formula or from Pk=P[FQk], the degree of the components
(Pk) i , i=1, ..., p, is known: each (Qk) j is of degree mj for j=1, ..., q, so
(Pk) i is the sum of polynomials of degree respectively m j&1, and so is of
degree less than or equal to m1&1 for all i between 1 and p.

From the results of this part and from [9], it follows in linear system
terminology

Theorem 6. The continued fraction deduced from F is regular if and only
if F is a weakly perfect matrix.

7. WHAT IF THE ALGORITHM IS INTERRUPTED?

The algorithm which constructs the continued fraction from a given
matrix function F is interrupted if it is not possible to compute T &1(Fn). In
the scalar case, this is characteristic of a function F which is a rational func-
tion. In the vector case (i.e., q=1), it has been proved [5] that the com-
ponents of the given function satisfy a linear equation with polynomial
coefficients. These results are particular cases of the following necessary
and sufficient condition which completely characterizes the interruption
phenomenon in the matrix case

Theorem 7. The algorithm is interrupted if and only if there exists a
q_(q+ p) matrix C=(:, ;) with polynomial entries, of maximum rank q
such that

det \C \Iq

F++=det(:+;F)=0. (13)

Proof. Let us suppose first that the algorithm is interrupted. It is not
possible to compute T &1(Fn), which is equivalent to an

1, 1=0. In Gp, q we
have

\Iq

F +=Mn \Iq

Fn+ .

252 SOROKIN AND VAN ISEGHEM



As Mn=W1 } } } Wn and |det Wk |=1, Mn is a matrix with determinant plus
or minus one, all its coefficients are polynomials, and its inverse matrix has
the same properties: polynomial coefficients and determinant \1. Written
in block form, we get

\Iq

Fn+=\ :
:$

;
;$+\

Iq

F+ ,

with :+; F invertible. We compute an
1, 1 from the formula

Fn=(:$+;$F)(:+;F)&1.

Let us write :=(:i, j), i, j=1, ..., q, and similarly for :$, which is a p_q
matrix, ;i , i=1, ..., q and ;j$ , j=1, ..., p the rows of ; and ;$ and Fk ,
k=1, ..., q the columns of F. The first row of :$+;$F is

(:$+;$F)1=(:$1, 1+;$1F1 , :$1, 2+;$1F2 , ..., :$1, q+;$1 Fq).

The first column of (:+;F)&1 is, up to the division by the determinant,
formed by the cofactors of the first column of (:+;F)t. Finally an

1, 1=0
gives

:
q

i=1

(:$1, i+;$1F i)((:+;F)&1) i, 1=0

}
:$1, 1+;$1F1

:2, 1+;2 F1

b
:q, 1+;qF1

} } }
} } }

} } }

:$1, q+;$1 Fq

:2, q+;2Fq

b
:q, q+;qFq

}=0.

The condition becomes

det _(:� , ;� ) \Iq

F+&=0.

The matrix (:� , ;� ) is the submatrix of M &1
n formed by the rows from index

2 to q+1. Mn being invertible, the matrix (:� , ;� ) is of size q_(q+ p) and
of maximum rank q.

Conversely, let us suppose that there exists (:, ;) of size q_(q+ p) and
of rank q such that

det _(:, ;) \Iq

F+&=0,
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and that the algorithm is not interrupted, i.e., goes on for n as large as
necessary, i.e., Qn and Pn are defined for all n. We admit for the moment
the following result: If det(:+;F)=0, then for all n large enough

det(:Qn+;Pn)=0.

This result is proved in the last lemma, just below. This is equivalent to
saying that for all n large enough

(:, ;) \Qn

Pn+
is of rank strictly smaller than q. But then

(:, ;) Mn

is also of rank strictly smaller than q and because Mn is invertible, this
would mean that the matrix (:, ;) is not of maximum rank. Consequently,
if

det _(:, ;) \Iq

F+&=0,

with (:, ;) of maximum rank, then the algorithm breaks down. K

We give now the proof of the lemma already used.
Everywhere in the sequel the determinant will be denoted by

det A=|A|.

Lemma 2. If |:+;F|=0, then for n large enough

|:Qn+;Pn |=0.

Proof. Let us denote F=(F 1, ..., F p)t, where (F i)t is row i of the matrix
F. Similarly let Pn=(P1

n , ..., Pp
n)t, while Qn=(Qn , ..., Qn+q) where Qn is a

column vector of size q.
From the identity

\1q

0
&;
1p +\&F

;
1p+=\:+;F

&F

0
1p+

it follows that

|(:+;F) Qn |= } :Qn

&FQn

;
1p } .
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We denote by A the preceding expression, Qn being an invertible matrix,
the assumption of the lemma can be written as

A=0. (14)

The approximation property (F i Qn&P i
n) j=O(1�z[n�p]+1), i=1, ..., p;

j=1, ..., q, leads to the following, by expansion of the determinant along
the last p rows, and because the degree of each component of :Qn is
([n�q]+const): for z � �, n large enough and for any p and q the follow-
ing expression B

B= } :Qn

&(FQn&Pn)
;

Op}t
(z[n�q]+c)max((q& p), 0)

(z[n�p]+1) p � 0. (15)

From the two last equations the polynomial part of A&B is zero

P[A&B]=0

In order to write all the terms explicitly, the following is written for p=3,
and q any integer, but the method leads to the result for all p and q.
Moreover, to have a more compact notation

F 1 a

}F 2 b} is written for }
:Qn

F 1

F 2

F 3

a
0
0

;
0
b
0

0
0
c} ,F 3 c

where F i is a row of size q and a, b, c complex numbers:

&F 1 Qn+P1
n 0 &F 1 Qn+P1

n 0

A&B=A& }&F 2Qn+P2
n 0 }& }&F 2 Qn+P2

n 0}P3 &1 &F 3Qn 1

&F 1Qn+P1
n 0 &F 1Qn+P1

n 0

=A& }&F 2Qn+P2
n 0 }& } P2

n &1}P3 &1 &F 3Qn 1

&F 1 Qn+P1
n 0

& } &F 2Qn 1}&F 3Qn 1

&F 1Qn+P1
n 0 &F 1 Qn+P1

n 0 &P1
n 1

= }&F 2Qn+P2
n 0}+ } &P2

n 1}+ }&F 2Qn 1} .&P3 1 &F 3 Qn 1 &F 3Qn 1
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Each term is equivalent, for z large, to polynomials of respective degree:
[n�q](q+1)&2[n�p]+c, [n�q](q+2)&[n�p]+c$, [n�q](q+3)+c"
where c, c$, c" are some finite constants. The difference between two of
these degrees is [n�q]+[n�p]+c"$, so for n large enough there does not
exist a linear relation between them and the polynomial part of each term
is zero, namely

&P1
n 1

P _}&F 2Qn 1}&=0.

&F 3Qn 1

Similarly

&F 1Qn 1 &F 1Qn 1

P _}&F 2Qn 1}&=P _} &P2
n 1}&=0.

&P3
n 1 &F 3Qn 1

Returning to A&B we get

&F 1 Qn 1 &P1
n 1

P[A&B]=&P _} &P2
n 1}+ }&F 2 Qn 1}&P3
n 1 &P3

n 1

&P1
n 1 &P1

n 1

+ } &P2
n 1}& }&P2

n 1}&&F 3Qn 1 &P3
n 1

&P1
n 1 &F 1Qn 1

=&P _}&F 2Qn 1}+ } &P2
n 1}&&P3

n 1 &P3
n 1

&P1
n 1

&P _} &P2
n 1}&=0.

&F 3 Qn+P3
n 0

As before both polynomials are zero, being of different degrees and zero for
z large. By permutation of the indices in the first one, two other terms are
zero. Finally, for n large enough, what remains is

&P1
n 1

P[A&B]= }&P2
n 1}=|:Qn+;Pn |,

&P3
n 1
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from which the required result is obtained

&:Qn+;Pn&=0.

The already known cases, i.e., p=q=1 for the scalar case and p=1 for the
vector case are of course recovered. K

Definition 4. Functions fi, j , i=1, ..., p, j=1, ..., q are said to be ( p, q)
dependent if there exists a q_( p+q) matrix C of polynomials, of maxi-
mum rank q such that the matrix F=( fi, j) i=1, ..., p, j=1, ... , q satisfies

det _C \Iq

F+&=0.

This definition is given to have the preceding theorem in the following
form: The continued fraction of F is interrupted if and only if the functions
fi, j of F are ( p, q) dependent.
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